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Abstract

Estimating a forward-looking monetary policy rule by the Generalized Method
of Moments (GMM) has become a popular approach since the influential pa-
per by Clarida, Gali, and Gertler (1998). However, an abundant econometric
literature underlines to the unappealing small-samples properties of GMM es-
timators. Focusing on the Federal Reserve reaction function, we assess GMM
estimates in the context of monetary policy rules. First, we show that three
usual alternative GMM estimators yield substantially different results. Then,
we compare the GMM estimates with two Maximum-Likelihood (ML) esti-
mates, obtained using a small model of the economy. We use Monte-Carlo
simulations to investigate the empirical results. We find that the GMM are bi-
ased in small sample, inducing an overestimate of the inflation parameter. The
two-step GMM estimates are found to be rather close to the ML estimates. By
contrast, iterative and continuous-updating GMM procedures produce more
biased and more dispersed estimators.
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1 Introduction

The benchmark Taylor rule states that the central banks should set the short-term
interest rate in proportion of the inflation rate and the output gap. However, since
Taylor’s (1993) prominent contribution, an abundant empirical as well as theoretical
literature has claimed that central banks may have a forward-looking behavior (Clar-
ida and Gertler, 1997, Clarida, Gali, and Gertler, 1998, 2000, Haldane and Batini,
1998). This assumption implies the use of an adequate estimation method to over-
come the presence of expected inflation in the policy rule. Estimating forward-looking
monetary policy rules by Generalized Method of Moments (GMM) has become a pop-
ular approach since the influential work by Clarida, Gali, and Gertler (1998).1

In this paper, we assess the robustness of GMM estimates in the context of a
forward-looking reaction function. This investigation is motivated by the growing
literature on the small-sample properties of the GMM procedure. Using Monte-Carlo
experiments, Tauchen (1986), Fuhrer, Moore, and Schuh (1995) and Andersen and
Sorensen (1996) provided evidence that GMM estimators can be strongly biased and
widely dispersed in small samples. These studies have investigated small-sample
properties of the GMM, in the context of asset-pricing, inventories, or consumption
models respectively. Forward-looking monetary policy rules offer an original field
for investigating GMM properties. Moreover, it suggests to focus specifically on the
inflation parameter in the reaction function.

We contrast the GMM estimators with an alternative estimation procedure for
forward-looking models, namely the Maximum Likelihood (ML) method. The ML
approach involves the estimation of a structural model of the economy. For this pur-
pose, we use a version of the Rudebusch and Svensson (1998) model and solve the
whole rational-expectations model using the Anderson and Moore (1985) procedure.
The properties of ML and GMM estimates of the reaction function are then compared
using Monte Carlo simulations.

While we focus on the widely-studied Federal Reserve reaction function over the
period 1979 to 1998, we present some original empirical results. In the literature
on the reaction function, estimation has been typically performed using the two-
step GMM estimator. Here, we estimate the reaction function using three alternative
GMM procedures, as well as two ML procedures. ML and “two-step” GMM are
found to produce similar results, from which the estimates produced by “iterative”
and “continuous-updating” GMM differ markedly. We conduct Monte-Carlo simu-
lations to investigate these results. The GMM exhibit a small-sample bias, towards
overestimating the response of interest rate to expected inflation. The bias is limited,
however, so that our overall assessment of GMM in the case of a monetary policy
rule is less critical than that found by Fuhrer, Moore, and Schuh (1995) in the case of
inventories. Nevertheless, GMM parameter estimates are found to be more imprecise
than FIML estimates, especially in the case of continuous-updating GMM.

The paper is organized as follows. The benchmark specification of a forward-

'Examples include Clarida, Gali, and Gertler (2000), Mehra (1999), Orphanides (2000) for US
data, or Peersman and Smets (1998), Gerlach and Schnabel (2000), Angeloni and Dedola (1999),
Nelson (2000) for European data.



looking reaction function is presented in section 2. Section 3 summarizes GMM esti-
mation procedures and presents empirical evidence obtained with this approach. In
section 4, ML estimation is introduced and implemented. Section 5 provides some
interpretation of the empirical evidence, using Monte-Carlo simulations. Section 6
concludes.

2 The monetary-policy reaction function

In the baseline Taylor rule, the central bank is assumed to set the level of the nominal
short-term interest rate as a function of the rate of inflation and output gap:

i =1+ B (T —7) + vy (1)

where 7; denotes the short-term nominal interest rate, 7, the inflation rate, v, the
output gap. The inflation rate is the four-quarter moving average of inflation in the
implicit GDP deflator. The output gap is defined as the percent deviation of real
GDP from its deterministic trend. The constant ¢* is the long-run equilibrium nom-
inal interest rate and 7* is the inflation target. The output-gap target is assumed to
be zero. The coefficient on inflation (/) is a crucial parameter, since in most macroe-
conomic models based on the Phillips curve and the I-S curve, 7 > 1 is a relevant
condition for stability (Taylor, 1999b, and in the context of forward-looking models,
Kerr and King, 1996, Clarida, Gali, and Gertler, 2000).

The Taylor rule has received a widespread attention in the empirical literature. In
particular, it has been shown to provide a rough description of US monetary policy
during the Greenspan and Volcker tenures (Taylor, 1993, 1999a, Judd and Rudebusch,
1998). However, most estimates consider “modified” Taylor rules. First, central banks
often appear to smooth changes in interest rates. Several motivations for such an
interest-rate smoothing have been proposed (Sack and Wieland, 1999, Woodford,
1999). For instance, in case of uncertainty concerning the model’s parameters, it
is optimal for the central bank to adjust interest rates only gradually. Therefore,
the short-term rate is allowed to adjust gradually to its target, which is defined by
equation (1).

A second issue is whether the central bank sets the level of the interest rate as
a function of observed or expected inflation. Though the terminology is not uncon-
troversial, we will refer to the policy rule as being “forward-looking” if the central
bank reacts to some expectation of inflation. Several authors have claimed that the
forward-looking reaction function is consistent with the observed behavior of central
banks (Mehra, 1999, Clarida and Gertler, 1997, Clarida, Gali, and Gertler, 1998,
2000, Orphanides, 1998).2 Most central banks explicitly claim that they do not only
consider past or current economic conditions, but they also include economic forecasts
in their macroeconomic condition statement. In addition, from the normative view-
point, that policy rules should be forward-looking has been advocated by Haldane

2Note, however, that Fair (2001) strongly rejects the forward-looking specification for the Fed
reaction function. He argues that this outcome occurs when estimating the policy rule over the
period from 1982:Q4 trough 1999:Q3, which is assumed to be more stable than the sample usually
used (beginning in 1979).



and Batini (1998) and Svensson (1997). Therefore, a large number of recent studies
estimate the following more general specification, which incorporates the expected
inflation rate:

i = f)it—l + (1 — /)) (?* + /3 (Et—lft—él — 7'('*) + ’Yyt—1> + & (2)

where ¢, denotes a random policy shock, and F; ; denotes the mathematical expec-
tation conditional to the information set containing all variables dated ¢ — 1. The
parameter p represents the degree of interest-rate smoothing. We do not assume that
the central bank reacts to expected output gap. It is worth emphasizing that current
inflation and output gap are not supposed to be observed in real time by the central
bank. Rather, we assume that, at date ¢, only inflation and output gap at date t — 1
are in the information set of the central bank.?

Estimating equation (2) provides estimates of the weights on inflation and output
gap in the monetary policy rule and the speed of adjustment to the rule. The long-
run inflation target 7* is not identified however, since the constant term is equal to
r* + fm*. Note that, if we assume a value for the long-run equilibrium real interest
rate (for instance, the sample average real rate), we easily obtain an estimate of the
long-run inflation target. Last, note that in line with most of the reaction function
literature, we assume stationarity of the variables.

3 GMM estimation

Since expectations are unobserved, the standard approach is to substitute FEym; .4
with the actual value 7;.4 in equation (2)4 This approach rises two problems. First,
since the expected inflation is measured with error by observed inflation, we face an
error-in-variable problem. This is because the error term is likely to be correlated
with one of the explanatory variables, namely the future inflation rate. Second, since
the current interest rate shock is likely to affect future inflation, there is an endo-
geneity bias. Thus, the OLS procedure provides biased estimators, whereas GMM
provides a consistent estimation procedure. GMM estimators have been shown to be
strongly consistent, asymptotically normal (Hansen, 1982) and have been applied to
rational-expectation models along the lines of Cumby, Huizinga, and Obstfeld (1983)
and Hansen and Singleton (1982). In the rational-expectation context, the GMM
approach is very appealing, because it does not require strong assumptions concern-
ing the underlying model. In fact, it only requires identifying relevant instrument
variables, strongly correlated with RHS variables, but uncorrelated with innovations.
The central bank’s information set at time ¢ is here assumed to include four lagged

3To some extent, even this assumption is questionable, since the output gap is measured pre-
cisely after many quarters only. See Orphanides (2000) who claims that, if monetary policy during
Chairman Burns tenure appears non-optimal a posteriori, this is because the output-gap measure
has been dramatically corrected since the end of the 70s.

4 An alternative approach for models with expectations, not pursued here, is to use actual inflation
forecasts. McNees (1985, 1992) and Orphanides (1998) used the Board of Governors’ staff forecasts
presented at each FOMC meeting.



values of interest rate, inflation and output gap. (We reduce intentionally the in-
formation set to the variables used in the structural model discussed in section 4.)
These instruments are plausibly correlated with future inflation.®

3.1 GMM estimators

Let equation (2) be expressed in standard regression notation as
y=X0+¢

with y a (7" x 1) vector and X a (T x n) matrix. X; = (14, ..., Tne) 1S & vector of
observation and @ is the (n x 1) vector of unknown parameters. Let Z be the (T X q)
matrix of instrumental variables, with ¢ > n. All the ¢ instruments are assumed to
be predetermined, in the sense that they are orthogonal to the current error term:
E (Zye,) =0, ¥Vt and i = 1, ...,q. This can be written as

Eg, (6) =0

where g, (0) = Z; - (v, — Xi0) = Z; - &4
The GMM estimator, denoted 0qaras, 1s the value of 6 that minimizes the scalar

Qr (0) = gr (0) Wrar (0)

where the (¢ x 1) vector gr (8) = £ /-, . (f) denotes the sample mean of g, (6). W
denotes the (¢ x ¢) GMM weighting matrix. An asymptotically efficient estimator is
obtained by choosing as a weighting matrix a consistent estimator of W = V1
where V = E (gt (0) g (0)2 = E(e72,7]) is the covariance matrix of g, (). The
GMM estimator is then defined by:

0 = (X' ZWyZ'X) " X' ZWyp Z'y. (3)
When innovations are likely to be heteroskedastic and serially correlated, an optimal

GMM estimator is obtained when the weighting matrix Wi is estimated by the inverse
of the long-run covariance matrix

wr=(5r)" . (4)

The long-run covariance matrix can be consistently estimated by (Newey and West,
1987)

R I 1 T
Sp=So+y w)(S+8)  with  S=— 3 &éy (22,) ()

=1 t=I+1

"We also estimated equation (2) using the same instrument set as Clarida, Gali, and Gertler
(2000), which, in addition to lags of inflation, output gap and interest rate, includes lags of com-
modity price inflation, M2 growth and the spread between the long rate and the short rate. Our
results are essentially unaltered. For instance, the two-step GMM estimate of parameter 3 is 1.85
(versus 1.92 for our baseline instrument set).



where & = y; — X0 and w(l) = 1 — —L- denotes the Bartlett kernel. Hence, the
asymptotic covariance matrix of 0y is given by V = (X'ZWyp Z' X )71.

Note that we need an estimate of W7 before estimating éT and we need an estimate
of O before estimating Wr. In the following, we implement three alternative versions
of the GMM estimator often considered in the theoretical literature.

In the first approach, the parameter vector is estimated with the two-step two-
stage least squares, or “two-step GMM?”, initially proposed by Cumby, Huizinga, and
Obstfeld (1983) and Hansen and Singleton (1982).° Assume an initial guess for the
weighting matrix. Usually, one sets D%/}O) = %Zle Z, 7. An initial estimate of the
parameters, @g) ), is obtained using two-stage least squares. Then, one constructs an

~ (0
estimate of the optimal weighting matrix W}l) using equation (4) with &, = y,— X, Q(T ).

Last, the two-step GMM estimator, denoted é(,l), is obtained from equation (3) with
W/%l) as weighting matrix.

The second approach, suggested by Hansen (1982), Ferson and Foester (1994) or
Hansen, Heaton, and Yaron (1996), relies on estimating parameters and the weighting
matrix recursively. Thus, equations (3) and (4) are estimated repeatedly, until con-

o gl

criterion (chosen here to be equal to 107°). (;7;) denotes the GMM estimator at step
1. This procedure is called “iterative GMM” in the following.

In the last approach, called “continuous-updating GMM?” | developed by Hansen,
Heaton, and Yaron (1996) and studied in Stock and Wright (2000), the weighting
matrix is continuously altered as 0 is changed in the minimization. Therefore, the
continuous-updating GMM estimator is the minimizer of

vergence of parameter fr is reached, such that (6, ) is less than a convergence

gr (0) W (0) gr (0) .

GMM estimates are justified on asymptotic grounds. Small-samples properties of
the GMM procedure have been studied in a number of papers. The general result is
that the asymptotic theory provides a poor approximation in finite samples.” Using
Monte-Carlo experiments, Tauchen (1986), Kocherlakota (1990), and Andersen and
Sorensen (1996) provided evidence that GMM estimates can be strongly biased in
small samples. More specifically, there is a strong variance/bias trade-off as the num-
ber of instruments is increased. Including more moment restrictions (more informa-
tion) improves the estimation performance, but, in small samples, it also deteriorates
the precision of the estimated weighting matrix. Hansen, Heaton, and Yaron (1996)
compared the small-sample properties of alternative GMM estimators. The two-step
estimator and the iterative estimator are shown to be more widely median biased than

6This approach has been used, for instance, by Clarida, Gali, and Gertler (1998, 2000) and
Peersman and Smets (1998) in the context of the reaction function.

7One reason for this result is that estimating an efficient GMM estimator uses a Newey and West
(1987) weighting matrix, which is a function of estimated fourth moments of innovations. Sample
fourth moments are known to converge toward the true value only very slowly. Therefore, the Newey
and West weighting matrix is an optimal estimator of the true matrix, although it is likely to be a
poor estimator in small sample.



the continuous-updating estimator. But, the distribution of the continuous-updating
estimator has much fatter tails.

The alternative GMM estimators have the same asymptotic distribution. Never-
theless, the continuous-updating GMM offers the advantage over the two-step and
iterative GMM approaches that estimates are invariant with respect to the initial
weighting matrix for Wp. Moreover, in an asset-pricing context, the iterative GMM
approach is found to have superior small-sample properties as compared with the
two-step GMM (Ferson and Foerster, 1994).

As stressed by Nelson and Startz (1990) and Maddala and Jeong (1992) in the
context of the Instrumental Variable estimator or by Stock and Wright (2000) in
the context of the GMM estimator, the poor performance of these estimators can
be related to the weak correlation between instruments and the relevant first-order
conditions.

Another important feature of GMM estimation is that the information set contains
more instruments than parameters to be estimated (provided g > n). Therefore, when
the model is true, all the elements of the sample moments g, @1) are close to zero,
but they cannot be set to zero exactly. It turns out that if the weighting matrix W

N1
is chosen optimally, so that W, = (ST) , then the minimized distance

JT = Tg'r <éT>/ I/VTgT (éfr)

is asymptotically distributed as a x? with ¢ — n degrees of freedom. This provides us
with the Hansen’s test of the over-identifying restrictions (Hansen, 1982). A rejection
of these restrictions would indicate that some variables in the information set fail to
satisfy the orthogonality conditions.

3.2 Empirical results

We now present estimation of the monetary policy reaction function based on equa-
tion (2). We consider monetary policy for the Federal Reserve over the period from
1979:Q3 to 1998:Q4.% Our sample period covers P. Volcker (1979:Q3-1987:Q2) and
A. Greenspan (1987:Q3 up to now) tenures. The assumption that a unique monetary
policy regime has prevailed over this period is controversial. However, statistical ev-
idence in favor of reaction function instability within this sample is at most mixed
(Judd and Rudebusch, 1998, Estrella and Fuhrer, 1999). We use quarterly data,
drawn from the OECD databases BSDB and MEI. The Federal funds rate is used as
the central bank’s instrument. The output gap is defined by the deviation of (log)
real GDP from (log) potential GDP. Potential GDP is computed using a linear trend
with a break in trend growth rate in 1974.

Table 1 reports parameter estimates of the forward-looking reaction function.
Estimates obtained using the two-step GMM, the iterative GMM, and the continuous-
updating GMM are reported in Panel A, B, and C respectively. The lag length in the
weighting matrix is chosen equal to the conventional value L = 4 (consistently with

8While our data set ends in 1999:Q4, our estimates end in 1998:Q4, because our GMM estimates
use data until the end of 1999.



the quarterly frequency of our data) or determined using the optimal bandwidth as
suggested by Andrews (1991), in which case we have L = L*.

First, we consider the two-step GMM approach with L = 4. The point esti-
mate of the inflation parameter (3 = 1.92) is markedly larger than the Taylor 1.5
benchmark coefficient, although the Taylor coefficient falls in the confidence inter-
val. Furthermore, the output-gap parameter is not significant, in contrast with the
standard Taylor rule. When reestimating the model with lagged inflation in place of
expected inflation, we find the output-gap parameter (v = 0.38) to be significant and
the inflation parameter to (S = 1.36) be remarkably close to the Taylor coefficient.
These results indicate that current output gap appears in the usual reaction function
as a predictor of future inflation only. The J-statistic supports the over-identifying
restrictions implied by the model.

The iterative GMM and the continuous updating GMM yield even larger estimates
for the inflation parameter: [ is as high as 3.1 for the iterative GMM and 3.5 for
the continuous-updating GMM. Note that examples of large inflation parameters can
be found in the forward-looking reaction function literature. For instance, using ex-
post revised data and the Instrumental-Variable estimator, Orphanides (1998) finds
that the inflation parameter is equal to 3.7, with a standard error of 3. As with the
two-step GMM, the output-gap parameter is not significant in the reaction functions
reported in Panels B and C. Standard errors of parameter are larger than with the
two-step GMM. The continuous-updating GMM estimator yields estimates which are
close to the iterative GMM estimates, but standard errors are much larger.

For the three GMM approaches, the optimal bandwidth in the weighting matrix is
found to be L* = 1.Computing the weighting matrix with L =4 or L = L* does not
materially alter the estimated parameters for the iterative and continuous-updating
GMM approaches. By contrast, in the case of two-step GMM, the inflation parameter
obtained with L = L* is much larger than the parameter obtained with . = 4. More-
over, it is closer to the estimates obtained with the iterative and continuous-updating
approaches. Note that computing the weighting matrix with L = L* provides a
much larger Hansen’s test statistic for the two-step GMM. Although over-identifying
restrictions are not rejected even in this case, this may indicate that residuals are
slightly serially correlated. This may explain the dramatic change in the inflation
parameter.

It is noteworthy that the three GMM procedures display large differences in the
standard errors of parameter. Considering the inflation parameter with L = 4, we
find that the standard error obtained with iterative GMM is much larger than the
standard error obtained with the two-step GMM, but smaller than the standard error
obtained with the continuous-updating GMM.

To sum up, several empirical results are worth emphasizing. First, according to the
various GMM estimates, the weight of inflation in the reaction function is quite large
while the weight of output gap is insignificant. Second, empirical results provided by
iterative GMM and continuous-updating GMM contrast markedly with those pro-
vided by the usual two-step GMM approach. The former approaches produce higher
parameter standard errors and higher standard errors of estimates.



4 ML estimation

4.1 The ML approach

In this section, we focus on an alternative estimation procedure, namely the Maxi-
mum Likelihood (ML) approach. The ML approach requires that an auxiliary model
is estimated for the forcing variables (here, the output gap and the inflation rate).
The auxiliary model, together with the equation of interest is then solved for forward-
looking variables, yielding cross-equation restrictions. An appealing advantage of ML
over GMM, in forward-looking models, is that expectations obtained with ML esti-
mation are fully model-consistent. Thus, the expected inflation which appears in the
reaction function (2) is consistent with the inflation equation of the model. The ML
approach is of course demanding since a structural model has to be estimated for
variables other than interest rate. However, in the present case, the widely-used I-S
curve / Phillips curve framework provides us with a reliable benchmark model of the
output-inflation joint dynamics.

For the problem at hand, the estimation can be performed in two ways: First, the
FIML procedure involves the joint estimation of the Phillips curve, the I-S curve and
the reaction function. Second, the two-step ML procedure is based on a preliminary
estimation of the Phillips curve and the I-S curve. The latter implies a loss of effi-
ciency, but reduces the computational burden dramatically. We will provide evidence
on both procedures in the following.

Both ML estimations of the forward-looking reaction function are implemented
using the procedure developed by Anderson and Moore (1985). This procedure com-
putes the reduced form of a forward-looking model. The forward-looking model can
be written in the format

0 0
Y. Hjwey+ ) HiE (w1) = & (6)

J==T J=1

where z; = (7, yy, it>/ and H; are conformable square matrices containing the model’s
parameters. The innovations g, are i.i.d. N (0,X). 7 and 0 denote leads and lags
respectively (7 = 6 = 4, in our empirical application). In the present context,
inflation leads are the only forward-looking terms.

Using the generalized saddlepath procedure of Anderson and Moore (1985), the
expectation of future terms in equation (6) is expressed as a function of expectations

of lagged terms:
—1

Et (f[;'t+k) = Z BjEt (fI;t_k+j) k > 0. (7)

j=—7

Then, equation (7) is used to derive the expectation of future terms as a function
of the present and past terms. Substituting expectations into equation (6) gives the
so-called observable structure

0
Y Sjwi; = e (8)

j=—



This procedure is very efficient and can be applied to a wide range of applications.
It has been widely used in the empirical literature (see, e.g., Fuhrer, Moore, and
Schuh, 1995, Fuhrer and Moore, 1995a and b).

Finally, the concentrated log-likelihood function is computed using the observable

structure (8):
T

1 1 & IR DY’
InlL = —§TLT In (27) — 5 ; (ln ’E‘ + &% Et)
where 3 = %Zle £,&; is the estimated covariance matrix of residuals. The log-

likelihood function is maximized using the BFGS algorithm. The parameter covari-
ance matrix is computed as the inverse of the Hessian of the log-likelihood function.

4.2 Estimation results

As a structural model, we estimate a version of the model proposed by Rudebusch
and Svensson (1998). It includes a Phillips curve (PC) and an I-S curve. This model
embodies the main features of the standard macroeconomic paradigm and has proved
to be a robust representation of the U.S. economy. The backward-looking nature of
this model can be pointed as one potential source of mis-specification. However, no
compelling empirical forward-looking counterpart of the RS model has so far emerged
(see Estrella and Fuhrer, 1998). We estimate the following PC/I-S model:

Ty = QpiTy 1+ QraTy o+ Q3T 3 + QaTy g + QY1 + Uy (9)

Y = /Bylyt—l + .ByQyt—Q + :’6)7“ (it—l — -1 — /BO> + vy (]‘O)

The Phillips curve relates quarterly inflation 7, to lags of inflation and to lagged
output gap. Since we do not reject the assumption that the four autoregressive
parameters freely estimated sum to one, we impose this restriction in equation (9), so
that oy =1 — a1 — Qg — ar3. This restriction is consistent with an accelerationist
form of the Phillips curve. Moreover, we do not include a constant term in the
equation, so that the output gap is assumed to be null in the long run. The I-S curve
relates the output gap to its own lags and to the difference between the lagged short
nominal rate and the lagged inflation rate. This last term is a proxy of the short real
interest rate. Note that, unlike Rudebusch and Svensson, we include the lagged short
real rate rather than a four-quarter moving average of the short real rate.

Parameter estimates are reported in Table 2. Standard errors are shown in paren-
theses. To be consistent with our estimate of the reaction function, we use the sample
period 1979:Q3 to 1998:Q4. The empirical model is very close to the model estimated
by Rudebusch and Svensson (1998) over the period 1961:Q1 to 1996:Q2. Considering
first the ML structural model (Panel A), we obtain that the sensitivity of inflation to
output gap and the responsiveness of output gap to the short real interest rate are
slightly lower than those obtained by Rudebusch and Svensson (1998), but they have
right signs and are significant.

If we turn to the FIML estimation (Panel B), the Phillips curve, the I-S curve,
and the reaction function are estimated simultaneously, with a free covariance matrix

10



of innovations. As compared with the individually estimated Phillips curve reported
above, we notice that parameter estimates remain unaltered, when the model is esti-
mated using the FIML procedure. Concerning the I-S curve, the lagged output-gap
parameters ,Byl and ,8y2 change slightly, although the persistence is unchanged. More
importantly, the sensitivity of output gap to the short real interest rate decreases:
the point estimate is —0.058 with a standard error equal to 0.039.

We turn now to the reaction function parameters. Two-step ML is obtained
by using the estimated parameters of equations (9) and (10) to solve for inflation
expectations and estimate the monetary policy rule. The inflation parameter [ is
equal to 1.668. Therefore, the two-step ML estimate is lower than the estimates
obtained by GMM. Standard error of 3 is equal to 0.18. Therefore, it is much smaller
than those obtained with GMM procedures. Remind that it is 0.29 for the two-step
GMM with lag length L = 4.

The output-gap parameter 7 is essentially zero and non significant. The autore-
gressive parameter p is equal to 0.71 only. This is much lower than estimates obtained
with GMM procedures. The standard error of residuals is 1.071. The empirical fit
appears to be better than with GMM procedures.

In Panel B of Table 2, we report FIML estimates of the reaction function. We
obtain the following results. As compared to the two-step ML estimation, the infla-
tion parameter in the reaction function is slightly larger. We obtain § = 1.71 to be
compared with the two-step ML estimate 3 = 1.67. The output-gap parameter v and
the autoregressive parameter p are essentially the same as the parameters obtained
with two-step ML.

5 Monte-Carlo evidence

Previous sections have provided contrasting estimates of the forward-looking reaction
function. The GMM parameter estimates differ substantially from one approach
to the other and from ML estimates. Estimates seem to be less precise with the
GMM approaches than with the ML approaches. In this section, we investigate these
results, with a special focus on the expected-inflation parameter. We conduct Monte-
Carlo experiments to illustrate the small-sample properties of the various estimation
procedures.

5.1 Monte-Carlo design

In this section, we conduct Monte-Carlo experiments to assess the small- and large-
sample properties of estimators obtained using the GMM and ML estimators. The
design of the experiment is the following.

The data generating process (DGP) is given by the complete macroeconomic
model estimated by FIML. The DGP is thus constituted of equations (9), (10) to-
gether with the reaction function estimated by FIML (Table 3). The innovation
covariance matrix, f), used in the Monte-Carlo experiments is the residual covariance
matrix of (dy, vy, &;).

11



Each Monte-Carlo experiment is based on N = 500 replications.” For a given

sample size T', a sequence of T' + 50 random innovations are drawn from the normal
distribution N (0, f)) In the simulations, two sample sizes are used: T' = 78, and
1500 observations. The sample size T' = 78 corresponds to our estimation sample.
The sample size T" = 1500 illustrates whether biases are likely to disappear in large
samples. The random innovations are used to simulate the macroeconomic model (9),
(10) and (2). Initial conditions are set equal to the average values over the sample.
The first 50 entries are discarded to reduce the effects of initial conditions on the
solution path. For each simulated dataset, the reaction function is then estimated
using the three GMM estimators and the two ML estimators. We also report results
for the OLS estimators, expected to be inconsistent in our set-up, in order to evaluate
the magnitude of the OLS bias. For each sample size and each estimator, we have
500 parameters estimates, and the distribution of parameter estimates can then be
analyzed.'

In some experiments, for T' = 78 observations, the continuous-updating GMM
estimator failed to converge. The number of crashes is 2 percent of our samples.
Hansen, Heaton, and Yaron (1996) also reported some difficulties to obtain reason-
able parameter estimates with the continuous-updating GMM. First, the numeri-
cal search for the minimizer sometimes fails. In addition, even when convergence is
reached, the distribution of estimates can be severely distorted, because of a few
unrealistic samples. For this reason, in Table 6, for T" = 78, two rows are devoted
to the continuous-updating GMM estimator distribution. In the first row, we report
distribution statistic after we discarded only estimations which reached the maximum
number of iterations (here, 150). In the second row, we selected estimations which
satisfied the additional criterion that the smoothing parameter p lies inside the rea-
sonable interval [—1;1]. In our Monte-Carlo experiments, 5.4 percent of estimations
fell outside of this parameter space.

The two-step ML and FIML estimators are implemented as follows in the Monte-
Carlo experiments. For the two-step ML estimator, for each replication, we estimate
the Phillips curve and the I-S curve with simulated data, and then we estimate the
reaction function using the procedure described in section 4.1. For the FIML, all
macroeconomic parameters are estimated jointly with the reaction function. There-
fore, FIML is expected to perform better in this context.

5.2 Results

The distribution of the alternative reaction-function parameter estimators is surmma-
rized in Table 3 for the small-sample case (T = 78), and in Table 4 for the large-sample
case (T'=1500). Fig. 1 and 2 also display the parameter 3 distribution for the vari-
ous estimation approaches. In the following, the assumed true value of the parameter

9An upper bound on the Monte-Carlo standard error of parameter, denoted oy, is N~/20y.
Therefore, for N = 500, the upper bound on the Monte-Carlo standard error is 0.045 times the
computed standard error.

10Simulations were performed using GAUSS version 3.2 on a Pentium III platform. We used the
BFGS algorithm of the OPTMUM procedure for optimization. We found no discrepancies when we
used different algorithms. All experiments were performed using numerical derivatives.
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is 3 = 1.712 (see Panel B of Table 2).

Table 3 reveals that, in small samples, the two-step ML procedure is unbiased. The
median 3 parameter is equal to 1.704. This estimator is precisely estimated, since
the standard deviation is equal to 0.213 and the 90 percent confidence interval is
11.425;1.930]. As regards the FIML estimators, even for small samples, the estimator
of  is also unbiased, with a median value equal to 1.694.

Turning to GMM procedures, we find that estimators are somewhat biased and
very imprecise in small samples. The GMM bias on (3is positive. The smallest bias
is obtained for iterative GMM, with an estimator mean equal to 1.817, and a median
equal to 1.767. The bias is more pronounced in the case of the two-step GMM esti-
mator (with a 1.842 mean and a 1.767 median). The continuous-updating estimator
provides very imprecise estimates, even though the median is equal to 1.875. When
“unreasonable” outcomes are excluded, the mean is equal to 1.949 and median to
1.795. While the magnitude of the bias is not very large, one notices that it is in fact
as large as the bias obtained with the inconsistent OLS estimator.

The dispersion of GMM estimator is at least twice as large as that of ML estima-
tors. The iterative GMM estimator has a standard deviation as high as (.586, so that
the 90 percent confidence interval is [1.325;2.334]. The distribution of GMM estima-
tors is markedly asymimetric, since the upward boundary is much more distant from
the median than the downward boundary. This provides a rationale for the very large
[ estimates obtained with iterative and continuous-updating GMM on the actual
data. This finding is consistent with some previous results, which indicate that the
GMM estimator may have very unusual properties (see, e.g., Tauchen, 1986, Fuhrer,
Moore, and Schuh, 1995, and Nelson and Startz, 1990, in the case of the Instrumental
Variable estimator). Noticeably, the continous-updating GMM estimator has very
fat tails and yields a non-negligible proportion of implausible estimate.

For large samples (Table 4), the bias obtained with GMM procedures disappears,
as expected.!! However, the standard error of GMM estimators remains about 25
percent higher than the standard error of ML estimators. This result is illustrated in
Fig. 2. The OLS estimator is asymptotically biased. Interestingly, in our set-up, the
bias on the inflation parameter is rather small.

The above results point in favor of ML estimate. However, an important caveat
is in order. On one hand, since the true specification is assumed to be given by our
FIML parameter estimates, the ML approach is undoubtedly favored in the exper-
iments. On the other hand, in the Monte-Carlo experiments, we only use relevant
instruments, and lags of relevant instruments. In actual GMM empirical estimate of
reaction function, it is a common practice to include a large number of instruments
(such as the exchange rate or raw material prices), some of which may be irrelevant,
thus accentuating the small-sample undesirable properties of GMM.

UNote that the difference between the alternative GMM estimators vanishes, even for intermediate
sample sizes (T = 300, not reported here).
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6 Conclusion

This paper has investigated the robustness of GMM estimates of the Federal Reserve
reaction function, relying on a dynamic forward-looking Taylor rule. Our main find-
ings are the following. First, focusing on the inflation parameter of the dynamic Tay-
lor rule, the various GMM procedures are found to provide very different estimates.
Iterative and continuous-updating GMM, which have not been often considered in
the reaction-function literature, produce particularly high inflation parameters in our
sample.

Second, ML is a feasible alternative to GMM for estimating a forward-looking
reaction function. A traditional drawback with ML is that it requires estimating
a structural model for forcing variables. But in the present context, a I-S curve /
Phillips curve model, such as the Rudebusch and Svensson’s (1998) model, provides
a fairly reliable simple model of the economy. In our sample, the inflation parameters
estimated using ML are lower than those estimated using GMM, and they are more
in line with the Taylor rule. Moreover, ML estimates are more precise than GMM
estimates. It is worth emphasizing, however, that results obtained using the two-step
GMM estimator are rather close to those obtained using the ML approach. Monte-
Carlo experiments support these outcomes. We find evidence that, in small sample,
GMM estimates tend to overstate the degree to which interest rates respond to future
inflation. The size of this bias is limited however.

Finally, our assessment of GMM in the case of a reaction function is therefore less
critical than that of Fuhrer, Moore, and Schuh (1995) in the case of inventories. The
simple approach usually adopted in empirical studies of the reaction function, i.e. the
two-step GMM, does not provide strongly biased parameter estimates. Other GMM
estimates are strongly biased. Last, GMM estimates exhibit an excessive dispersion.
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Table 1: Parameter estimates using GMM procedures

Panel A: Panel B: Panel C:

Parameter Two-step GMM Iterative GMM Continuous-updated GMM

Estimate Std Err. Estimate Std Err. Estimate Std Err.
L=L*(L*=1)
B 2.510 0.536 3.143 0.526 3.113 0.417
y 0.006 0.257 -0.118 0.236 -0.127 0.214
a -0.464 1.595 -2.007 1.640 -1.909 1.270
Jo) 0.832 0.049 0.844 0.055 0.829 0.065
see 1.303 1.445 1.481
J 7 (stat/p-value) 11.154 0.265 7.410 0.595 7.405 0.595
L=4
B 1.918 0.289 3.077 0.456 3.468 0.603
y 0.143 0.210 -0.023 0.232 0.094 0.150
a 1.108 1.078 -1.642 1.615 -2.644 2.019
p 0.808 0.048 0.833 0.052 0.744 0.089
see 1.241 1.468 2.354

J 1 (stat/p-value) 6.864 0.651 7.020 0.635 6.524 0.687




Table 2: Parameter estimates using ML procedures

Panel A: Panel B:

Parameter Two-step ML FIML

Estimate Std Etrr. Estimate Std Err.
Phillips curve
a 0.499 0.117 0.482 0.111
a ;. 0.212 0.127 0.187 0.119
a ;3 0.268 0.126 0.261 0.119
[0 ) 0.021 - 0.070 -
a, 0.100 0.048 0.116 0.047
see 0.868 0.910
I-S curve
By 1.309 0.104 1.196 0.102
By -0.393 0.103 -0.271 0.099
B, -0.071 0.037 -0.058 0.038
Bo 3.731 1.155 4.078 1.159
see 0.704 0.753
Reaction function
B 1.668 0.180 1.712 0.190
y -0.059 0.162 -0.090 0.210
a 1.607 0.758 1.480 0.793
P 0.705 0.056 0.708 0.061
see 1.071 1.142
InL -281.908 -280.888




Table 3: Parameter distribution statistics
(T=78 observations, N=500 draws)

Parameter Method Mean Median Std dev. 5% CI 10% CI 90% CI 95% CI
pF=1.712  Two-step GMM 1.842 1.790 0.445 1.308 1.457 2.284 2.525
Iterative GMM 1.817 1.767 0.586 1.133 1.325 2.334 2.623
Continuous-updating GMM 9.400 1.785 166.441 0.790 1.217 2.704 3.320
Continuous-updating GMM (truncated) 1.949 1.795 1.521 1.040 1.244 2.685 3.124
Two-step ML 1.699 1.704 0.213 1.336 1.425 1.930 2.007
FIML 1.708 1.694 0.217 1.377 1.452 1.967 2.049
y=-0.090 Two-step GMM -0.179 -0.166 0.314 -0.685 -0.549 0.165 0.270
Iterative GMM -0.196 -0.178 0.519 -0.893 -0.642 0.238 0.390
Continuous-updating GMM 8.329 -0.190 195.404 -1.302 -0.904 0.395 0.759
Continuous-updating GMM (truncated) -0.292 -0.197 0.989 -1.276 -0.904 0.290 0.516
Two-step ML -0.130 -0.137 0.238 -0.510 -0.420 0.178 0.253
FIML -0.124 -0.125 0.226 -0.479 -0.410 0.159 0.246
p=0.708  Two-step GMM 0.659 0.672 0.104 0.463 0.522 0.769 0.791
Iterative GMM 0.628 0.647 0.136 0.355 0.445 0.783 0.816
Continuous-updating GMM -76850.3 0.578 1721461.4 -0.492 -0.077 0.783 0.840
Continuous-updating GMM (truncated) 0.478 0.579 0.333 -0.257 0.037 0.777 0.810
Two-step ML 0.642 0.648 0.083 0.490 0.530 0.744 0.771
FIML 0.639 0.648 0.087 0.476 0.521 0.749 0.768
a=1.480 Two-step GMM 2.491 2.036 3.783 -2.111 -0.918 6.507 8.980
Iterative GMM 2.213 1.804 5.080 -3.989 -1.750 6.955 9.503
Continuous-updating GMM 68.757 1.993 1449 -6.955 -2.618 10.434 16.104
Continuous-updating GMM (truncated) 3.526 2.021 15.175 -4.344 -1.974 9.576 13.597
Two-step ML 1.499 1.503 1.089 -0.199 0.313 2.705 3.209
FIML 1.449 1.483 1.085 -0.381 0.180 2.568 3.069




Table 4: Parameter distribution statistics
(T=1500 observations, N=500 draws)

Parameter Method Mean Median Std dev. 5% CI 10% CI 90% CI 95% ClI
pF=1.712  Two-step GMM 1.718 1.716 0.034 1.665 1.675 1.761 1.779
Iterative GMM 1.718 1.716 0.034 1.665 1.675 1.761 1.779
Continuous-updating GMM 1.718 1.716 0.034 1.665 1.675 1.762 1.779
Two-step ML 1.713 1.711 0.027 1.668 1.678 1.747 1.758
FIML 1.711 1.711 0.027 1.667 1.676 1.746 1.758
y=-0.090 Two-step GMM -0.096 -0.096 0.051 -0.176 -0.162 -0.030 -0.014
Iterative GMM -0.096 -0.096 0.051 -0.176 -0.163 -0.030 -0.013
Continuous-updating GMM -0.098 -0.097 0.051 -0.177 -0.164 -0.031 -0.017
Two-step ML -0.089 -0.090 0.045 -0.165 -0.148 -0.034 -0.016
FIML -0.092 -0.093 0.046 -0.163 -0.148 -0.033 -0.015
p=0.708  Two-step GMM 0.706 0.707 0.020 0.672 0.681 0.732 0.736
Iterative GMM 0.706 0.707 0.020 0.672 0.680 0.732 0.736
Continuous-updating GMM 0.705 0.706 0.021 0.670 0.678 0.731 0.735
Two-step ML 0.706 0.706 0.015 0.681 0.686 0.726 0.730
FIML 0.705 0.705 0.015 0.679 0.685 0.724 0.728
a=1.480 Two-step GMM 1.531 1511 0.294 1.097 1.183 1.914 2.039
Iterative GMM 1.531 1.510 0.294 1.098 1.181 1.914 2.044
Continuous-updating GMM 1.535 1.510 0.296 1.094 1.180 1.919 2.053
Two-step ML 1.474 1.482 0.139 1.241 1.302 1.647 1.731
FIML 1.478 1.480 0.243 1.097 1.170 1.787 1.909
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