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Abstract
This paper uses a large data set of monthly time series both real and nominal

for the main countries of the euro area to evaluate the role of financial variables in
forecasting aggregate inflation and industrial production. The panel contains 725
variables which we organize in five blocks: sectoral and national industrial produc-
tion, sectoral and national prices, national money aggregates, financial variables
and miscellaneous leading variables. We use the dynamic factor model proposed
by Forni, Hallin, Lippi and Reichlin (2000) to establish leading properties of all
variables in the panel with respect to inflation and industrial production. We then
construct aggregates of leading variables by each block and establish the marginal
role of the financial aggregate in the forecasting equations. We find that financial
variables help forecast inflation but not industrial production.

JEL subject classification : C13, C33, C43.
Key words and phrases : Dynamic factor models, dynamic principal components, busi-
ness cycle, forecasting, financial variables.
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1 Introduction

There is a large literature in finance and macroeconomics which suggest that financial
variables are good predictors of inflation and real economic activity. Empirical evidence,
however, is mixed and results are not robust with respect to model specification, sample
choice and forecast horizon (for an excellent review of the empirical literature, see Stock
and Watson, 2000). This is clearly a puzzle for economic theory and one that is worth
investigating.

Our paper exploits the information from a large panel of monthly time series for the
six main economies of the euro area. The panel contains industrial production data (by
sectors and nations), prices (by sectors and nations), money aggregates (by nations), a
variety of potentially leading variables (survey data and others) and financial variables
such as interest rates (nominal and real, for different countries and maturities), spreads
and exchange rates.

The key idea of the paper is to evaluate whether by pooling information from
a broad group of financial variables we can obtain good predictions for the Euro-area
industrial production and consumer price indexes. In other words, instead of evaluating
the predictive content of single financial variables, we evaluate the predictive content
of averages of many of such variables, suitably selected. Forecasting performances at
different time horizons are evaluated through an out-of-sample simulation exercise.

The motivation of our strategy is not far from Stock and Watson (2000), who
have recently suggested that, by combining forecasts from poorly performing bivariate
models, the predictive power of financial variables is rescued. Here, instead of combining
bivariate forecasts obtained with different financial variables as predictors, we directly
combine information. By pooling forecasts, poor performances are averaged out; by
pooling predictors, as we do, noisy informations are averaged out.

Our reference model is the generalized dynamic factor model proposed and discussed
in Forni, Hallin, Lippi and Reichlin (2000, 2001a, 2001b) and Forni and Lippi (2001),
which is specifically designed to handle large panels of dynamically related time series.

In this model, each time series in the panel is represented as the sum of two compo-
nents: a component which captures most of the multivariate correlation (the common
component) and a component which is poorly cross-sectionally correlated (the idiosyn-
cratic component). The common components in the cross section have, so to speak,
‘reduced rank’, meaning they are all driven by a few common shocks. Such low di-
mensionality implies that the common components can be consistently estimated and
forecasted on the basis of few regressors, i.e. the present and the past of the common
shocks, or linear combinations of these shocks.

Unfortunately, the common shocks are not observable. Here we try to capture the
relevant information by constructing averages of the variables in the panel. The key
idea behind this procedure is simply that averaging kills the idiosyncratic components,
which are almost uncorrelated, because of an obvious large-number effect.

Cleaning from the idiosyncratic noise to obtain pure aggregate information, how-
ever, is not the only thing we need. By aggregating variables which are too ’lagging’
with respect to the target variables we could end up with information which, despite
being free from the idiosyncratic component, is not enough up to date to be useful
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in prediction. To solve this problem we analyze the leading-lagging relations between
the common components in the panel by estimating their dynamic covariance structure
and select only the leading variables before aggregation.

The whole procedure is then as follows. First, we establish the number of common
shocks and estimate the covariance structure of the common components as suggested
in Forni, Hallin, Lippi and Reichlin (2000). Second, we use this information to identify
and select the ‘leading’ variables. Third, we take the simple average of these leading
variables by category, i.e. the average of leading financial, money, price, industrial
production and miscellaneous variables. Finally, we use the present and the past of
these aggregates to predict our target variables and evaluate the performance of the
financial predictor.

The paper is organized as follows. In Section 2 we introduce the model and provide
examples. In Section 3 we briefly illustrate the data set and the data treatment. Section
4 reports detail of the forecasting exercise and the empirical results. Section 5 concludes.

2 Theory

2.1 The model

We assume that our i-th time series, suitably transformed, is a realizations from a
zero mean, wide-sense stationary process xit. Each process in the panel is thought
of as an element from an infinite sequence, so that i = 1, . . . ,∞. Moreover, all of
the x’s are co-stationary, i.e. stationarity holds for the n-dimensional vector process
xnt = (x1t, ..., xnt)′, for any n.

Each variable in the panel follows the relation

xit = χit + ξjt = bi(L)ut + ξit =
q∑

h=1

bih(L)uit + ξit (2.1)

where χit is the common component, ut = (u1t, . . . , uqt)′ is the q-dimensional vector
of the common shocks, which are unit variance white noises mutually orthogonal at all
leads and lags, bi(L) = bi1(L), . . . , bis(L) is a row vector of square-summable functions
in the lag operator, and the idiosyncratic component ξit is orthogonal to ut−k for any
k and i.

Moreover, we assume that (a) the q non-zero eigenvalues of the spectral-density
matrix of χχχnt = (χ1t, . . . , χnt)′, say λχ

1 (θ), . . . , λχ
q (θ), go to infinity as n → ∞ a.e. on

[−π, π); (b) the largest eigenvalue of the spectral-density matrix of ξξξnt = (ξ1t, . . . , ξnt)′,
say λξ

1(θ), is smaller than a real number λ a.e. on [−π, π) for any n.
For detailed comments on the model we refer to Forni, Hallin, Lippi and Reichlin

(2000). Here we shall limit ourselves to a few remarks.
First, the model generalizes the traditional dynamic factor model of Sargent and

Sims (1977) and Geweke (1977), in that the idiosyncratic components are not necessar-
ily orthogonal to each other. This feature is shared with the static approximate factor
model of Chamberlain and Rothschild (1983), for which our model provides a dynamic
generalization.
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Second, the orthogonality assumption is replaced here by assumptions (a) and (b),
which, loosely speaking, impose a minimum amount of cross-correlation for the common
components and a maximum amount for the idiosyncratic components. Condition (b),
in particular, includes the classic mutual orthogonality as a specific case and guaran-
tees that suitable linear combinations of the idiosyncratic components, like the simple
average, vanish as n goes to infinity. This property will be used below.

Finally, notice that the distributed lags in front of the common shocks ukt are quite
general. Different variables in the cross-section may react to the same shock with
different signs and time delays, giving rise to a wide range of dynamic behaviors. In
particular, variables may be ‘leading’ or ‘lagging’ in a sense that will be clarified in the
sequel.

2.2 A stylized example

To convey the intuition of our forecasting procedure we introduce the highly stylized
example

xit = χit + ξit = ut−si + ξit,

where the spectral density matrix of the vector (ξ1t ξ2t · · · ξnt) is equal to In. This is
the case in which the variables ξ are strictly idiosyncratic (i.e. mutually orthogonal).
We also assume that si is equal to zero, one, or two, this being a stylization of real
situations in which some of the variables are lagging (si = 2), some are leading (si = 0),
with respect to a central group of variables (si = 1), let us call them coincident.

Let us see what happens in this example when taking a simple cross-sectional av-
erage of a subset S of the xit’s. We get

Xt = aut + but−1 + cut−2 +
∑
i∈S

ξit/nS,

where a, b and c are respectively the percentages of leading, coincident and lagging
variables in S (so that a + b + c = 1) and nS denotes the total number of variables in
the set.

The first thing to stress is that the variance of the idiosyncratic component
∑

i∈S ξit/nS

is nS/n2
S = 1/nS , so that the component itself vanishes as nS → ∞. Different linear

combinations like weighted averages would have the same effect. In this paper we do
not make any attempt to optimize the weights of the aggregate predictor and use a
simple average (for a discussion of the optimal weights see Forni, Hallin, Lippi and
Reichlin, 2001b).

Now assume that nS is large, so that the idiosyncratic term is negligible, and that
we want to use Xt = aut+but−1+cut−2 in order to predict, say, x1t+1, which we assume
to be coincident. Moreover, let us concentrate on the prediction of the common part
χ1t+1 = ut (we shall come back to the prediction of the idiosyncratic part). Finally,
let us assume for illustrative purposes that we do not make use of the lags of Xt in
prediction and use instead the static projection

χ1t+1 = ut = AXt + Ωt.
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Obviously
A =

a

a2 + b2 + c2
,

while the variance of the residual has a maximum for a = 0 and a minimum of zero
when b = c = 0. In other words, considering the common components χit = ut−si , none
of them has any power to predict itself or the common component of leading variables.
However, the common components of the leading variables help predicting the common
component of the coincident (and lagging) variables.

This discussion suggest to identify the leading variables before aggregation. In the
following subsection we explain our procedure to select the leading variables. Here we
conclude with two remarks.

First, notice that in the example, the dimension of the common factor space is one,
so that a single aggregate is sufficient to capture the relevant information. In a more
general model, the number of aggregates should match q. To identify q we follow Forni,
Hallin, Lippi and Reichlin (2000), i.e. we compute the principal component series (see
the Appendix) and retain only principal components explaining more than a percentage
p̄ of the total variance in the system. Precisely, with reference to equation (A.1) in the
Appendix, we require pq > p̄ and pq+1 < p̄.

Second, notice that our objective is to forecast a variable which contains an idiosyn-
cratic term. Such term is a white noise in the example, but in general is autocorrelated
and therefore can be predicted. Since multivariate information only help to forecast
the common component, we specify the forecasting equation as a projection on the
present and past of the q leading aggregates plus lags of the dependent variable. Such
lags, when controlling for the common factor space, should be useful in predicting the
idiosyncratic term.

2.3 Identifying the leading variables

In order to identify the leading variables we can follow different strategies. First, we can
look at the contemporaneous and lagged covariances between the common components.
Second, we can study the phase shift in the polar form of the cross-spectral densities.
Third, we can analyze the Granger causality relations. In the stylized example above,
all these strategies are theoretically equivalent. In the general case, however, things are
not so simple, because we have more than just one shock and the response functions
are more complicated, so that the very concept of ‘leading variable’ is problematic.
Different strategies imply different concepts of what is ’leading’ and produce different
results.

As explained below, we concentrate here on the cross-spectra and the implied time
phase lead. The main reason is that we can estimate consistently and quite directly the
spectral-density matrix of the common components as explained in the Appendix. An
alternative possibility would be testing for Granger-causality of each χit toward χ1t.
However, this would imply estimating the variables χit, not only their joint spectral
density, and perform a test which entails a generated regressors problem.

Let us now describe our criterion in more detail. Consider the estimated cross-
spectral density of each common component with respect to χ1t. In general the cross
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spectral density between two variables at and bt can be expressed, in its ‘polar form’,
as Shj(θ) = Ahj(θ)e−iφhj(θ) where Ahj(θ) is the ‘amplitude’ and φhj(θ) is the ‘phase’.
The phase φhj(θ) measures the angular shift between the cosine waves of at and bt at
frequency θ, while φhj(θ)/θ measures the time shift. Then, let the phase angle shift
of χjt with respect to χ1t be φj(θ), −π < θ ≤ π. At frequency zero, the phase may
be either 0 or π depending on whether long-run correlation is positive or negative.
Following Granger and Hatanaka (1964, ch. 12), we interpret φj(0) = π as indicating
that χjt is in ‘phase opposition’ and define the new series of interest as

ωjt =

{
χjt if φj(0) = 0
−χjt if φj(0) = π

Now we classify the resulting time series as being leading, coincident or lagging accord-
ing to their phase delay with respect to χ1t. We compute the phase angle shift of ωjt,
j = 1, . . . , n, with respect to χ1t, at a typical business cycle frequency, say θ∗ > 0,
and classify xjt as coincident if |φj(θ∗)| is smaller than a prespecified value τ , leading
if φj(θ∗) < −τ and lagging if φj(θ∗) > τ .

Of course, this is equivalent to computing the ‘time delay’ φj(θ∗)/θ∗ and compare
it with τ/θ∗. Notably, if θ∗ is sufficiently close to 0, the estimate of the time delay
φj(θ∗)/θ∗ can be regarded as an estimate of the derivative of the phase angle at θ = 0.
This is interesting in that such derivative is equal to the ‘mean lag’, which is a well-
known time-domain statistic measuring the ‘delay’ of a time series.

To conclude this section, note that, in the stylized example above, the phase angle
shift of the leading variables with respect to χ1t is −θ, corresponding to a mean lag of
−1 (mean lead of 1); the same, with opposite signs, for the lagging variables.

3 Data set and data treatment

The database used in this paper has been constructed by the Banca d’Italia research
department within the Bank of Italy-CEPR project (a detail description is in Altissimo
et al., 2001). We are using 725 monthly time series on key aggregate and sectoral
variables for the six main economy of the euro area—Germany, France, Italy, Spain,
The Netherlands, Belgium—and for, when available, the euro area as a whole. The
time span is 1985:1-2000:6.

For the purpose of this paper we have organized the data in five blocks:

• block 1: 155 financial variables (interest rates, nominal and real, spreads and
exchange rates);

• block 2: 18 money aggregates (money stocks for different countries);

• block 3: 138 industrial production variables (indexes for different countries and
industrial sectors);

• block 4: 135 price variables (producer price indexes and consumer price indexes);
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• block 5: 279 miscellaneous variables (European Commission surveys; national
Institutes surveys and other variables typically used for short term analysis).

The variables were selected so as to satisfy two requirements: one concerning the length
of the series and the other their homogeneity over time and across countries.

We removed outliers from each series using Tramo, a procedure developed by Gomez
and Maravall (1999); in particular we focused on transitory changes, level shifts and
additive outliers. The same procedure allowed to adjust for working days effects, when-
ever requested. We did not remove seasonality. To induce stationarity we took first
log difference for industrial productions, financial series, monetary aggregates, prices,
business and household survey responses and most interest rates; real interest rates
and the spreads between long and short term nominal interest rates did not need any
transformation.

The series were normalized subtracting their mean and then dividing for their stan-
dard deviation. This standardization is necessary to avoid overweighting series with
large variance when estimating the spectral density.

4 Empirical results

As the first step of our empirical exercise we identified the number of common factors
q as explained in Section 2.2, by requiring a minimal contribution p̄ = 10% to the
explained variance. We found q = 4.

Then we estimated the spectral-density matrix of the common components as ex-
plained in the Appendix and used this matrix to obtain an estimate of the time phase
shift of all the common components with respect to European IP and CPI indexes.

Having the time shift we classified the variables as leading, coincident and lagging
by following the procedure in Section 2.3. We focused on the frequency θ∗ = π/36,
corresponding to a period of six years, and set τ = π/36, so that the critical time phase
shift to define the leading variables is one month.

Table 5.1: Leading-lagging relations

with respect to the IP index with respect to the CPI index
% of leading average % of leading average

Blocks variables time lead variables time lead

Ind. production 0.57 1.86 0.24 -4.03
Prices 0.59 3.20 0.50 -0.88
Finance 0.15 -6.40 0.83 8.67
Money 0.50 0.59 0.44 -0.52
Other 0.70 3.12 0.36 -1.35

Table 5.1 describes the resulting leading-lagging relations. The first column shows the
percentage of variables of each block which are leading with respect to the industrial
production index. The second column shows the average time lead. The third and
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fourth columns report the same information with respect to the consumer price index.
It is worth noting that most of the financial variables are leading with respect to prices
and the average time lead is large (about eight months). By contrast, the variables
belonging to the other blocks are mostly coincident or slightly lagging. This suggests
that the financial variables can be useful in prediction, as in fact is the case (see
below). Note also that the behavior of the financial variables with respect to industrial
production is puzzling, since they are mostly lagging: a result which seems at odds
with the general picture resulting from the table.

We than proceeded to the aggregation step and constructed the following predictors:

• z1t: simple average of financial leading variables (block 1);

• z2t: simple average of money leading variables (block 2);

• z3t: simple average of industrial production leading variables (block 3);

• z4t: simple average of price leading variables (block 4);

• z5t: simple average of miscellaneous leading variables (block 5);

• Zt: simple average of all but financial leading variables.

Finally we used these predictors to estimate the following models, where xt denotes the
target variable:

xt+h = αh
0(L)xt + εh

0t (M0)

xt+h = αh
1(L)xt + βh

11(L)z1t + γh
1 (L)Zt + εh

1t (M1)

xt+h = αh
2 (L)xt + βh

12(L)z1t + εh
2t (M2)

xt+h = αh
3(L)xt + γh

3 (L)Zt + εh
3t (M3)

xt+h = αh
4(L)xt +

5∑
k=1

βh
k4(L)zkt + εh

4t (M4)

xt+h = αh
5(L)xt +

5∑
k=2

βh
k5(L)zkt + εh

5t (M5)

xt+h = αh
6(L)xt + β16z1t +

5∑
k=3

βh
k6(L)zkt + εh

6t (M6)
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xt+h = αh
7(L)xt +

5∑
k=3

βh
k7(L)zkt + εh

7t (M7)

We considered the forecasting horizons h = 1, 3, 6, 12 and different time spans, start-
ing from the sample 1985:1-1995:12 with T = 132 observations, and ending with T =
186−h observations. We first estimated by OLS the pure autoregressive model M0 with
maximum lags l = 0, . . . , 13, thus obtaining the forecasts xT l

0T+h, h = 1, 3, 6, 12, T =
132, . . . , 186−h. Then we computed the mean square errors MSEl

0h =
∑186−h

T=132(xT+h−
xT l

0T+h)2/(54−h). Finally we retained the dynamic specification l∗ minimizing the MSE.
Models M1-M7 were estimated with l∗ lags for the autoregressive part and with the
maximum lag g = 0, . . . , 13 for all the auxiliary regressors, thus obtaining the fore-
casts xTg

k,T+h, h = 1, 3, 6, 12, T = 132, . . . , 186 − h, k = 1, . . . , 7. Also in this case

we computed MSEg
kh =

∑186−h
T=132(xT+h − xTg

k,T+h)2/(54 − h) and retained the dynamic
specification g∗ minimizing the MSE.

Table 5.2: Results for models M0 − M3

Forecasting model M0 model M1 model M2 model M3
horizon simple AR Zt, z1t only z1t only Zt

CPI index
h = 1 0.445 (11) 0.410 (2) 0.416 (3) 0.449 (1)
h = 3 0.491 (9) 0.474 (3) 0.487 (3) 0.501 (0)
h = 6 0.593 (6) 0.573 (0) 0.574 (0) 0.606 (0)
h = 12 1.096 (1) 0.881 (4) 1.010 (5) 1.030 (1)
IP index
h = 1 0.591 (11) 0.556 (2) 0.608 (1) 0.540 (1)
h = 3 0.920 (12) 0.917 (1) 0.916 (0) 0.947 (0)
h = 6 0.836 (8) 0.802 (4) 0.862 (0) 0.857 (0)
h = 12 0.910 (2) 0.900 (1) 0.897 (0) 0.887 (2)

Note that the forecasting models were re-estimated for each T (whereas the leading
variables were individuated once and for all with the whole sample). The whole proce-
dure (starting from the identification of the leading variables) was repeated twice, for
the IP index and the CPI index.

Tables 5.2 and 5.3 show the results, i.e. the minimal MSEl∗
0h and MSEg∗

kh, for the
different forecasting horizons and the different models. The maximal lags l∗ and g∗ are
in brackets.

Let us consider first models M1, M2 and M3, shown in Table 5.2. A first observa-
tion is that the IP index seems almost unpredictable for h > 1. Overall, the inclusion of
the leading variables in M1 improves predictions with respect to the simple AR model.
This is worth noticing, since in most cases univariate autoregressive forecasts for prices
and production have proved hard to beat. Comparing columns 3 and 4 it is seen that
financial variables perform well only for the CPI index.
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Table 5.3: Results for models M4 − M7

forecasting model M0 model M4 model M5 model M6 model M7
horizon simple AR all blocks all but z1t all but z2t all but z1t and z2t

CPI index
h = 1 0.445 (11) 0.288 (2) 0.329 (2) 0.286 (2) 0.315 (1)
h = 3 0.491 (9) 0.446 (3) 0.455 (3) 0.447 (0) 0.454 (0)
h = 6 0.593 (6) 0.544 (1) 0.546 (0) 0.545 (1) 0.548 (1)
h = 12 1.096 (1) 0.886 (1) 0.889 (1) 0.890 (1) 0.891 (1)
IP index
h = 1 0.591 (11) 0.592 (1) 0.575 (3) 0.586 (1) 0.566 (1)
h = 3 0.920 (12) 0.936 (1) 0.960 (3) 0.930 (1) 0.959 (0)
h = 6 0.836 (8) 0.876 (0) 0.848 (0) 0.872 (0) 0.841 (0)
h = 12 0.910 (2) 0.909 (0) 0.907 (0) 0.904 (0) 0.906 (0)

Shifting to Table 5.3, we see that enlarging the information space does not help predict-
ing the IP index but causes an important improvement in forecasting prices, particularly
for h = 1. Our interpretation is that we need at least four aggregates to get a good
estimate of the common component, because the common component is driven by four
common shocks. Note that in all of the models M4, M5 and M6 we do have four aggre-
gates, but M4 and M6 perform better than M5, particularly for h = 1, indicating that
the financial variables are important. The F -tests shown in table 5.4 are consistent
with these results.

Table 5.4: F-tests for z1t in model M4

forecasting 1985:1- 1985:1- 1985:1- 1985:1- 1985:1- 5% critical 10% critical
horizon 1996:6 1997:6 1998:6 1999:6 2000:6 value value

CPI index
h = 1 2.15* 2.54* 3.37** 3.66** 4.05** 2.70 2.13
h = 3 0.26 0.34 0.62 0.59 0.68 2.46 1.99
h = 6 0.30 1.22 1.05 0.95 1.31 3.09 2.35
h = 12 2.59* 2.27 2.42* 2.44* 2.80* 3.09 2.35
IP index
h = 1 1.05 0.78 0.83 0.70 0.41 3.09 2.35
h = 3 3.81** 3.23** 2.66* 2.01 3.10** 3.09 2.35
h = 6 2.30 2.09 2.00 1.47 1.97 3.09 2.35
h = 12 0.30 1.32 1.06 1.31 1.30 3.94 2.75
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5 Conclusions

We used a large data set, made up by 725 monthly macroeconomic time series concern-
ing the main countries of the Euro area. We used this data to simulate out-of-sample
predictions of the Euro area industrial production and consumer price indexes and to
evaluate the role of financial variables in forecasting.

Our theoretical reference was the generalized dynamic factor model of Forni, Hallin,
Lippi and Reichlin (2000). Our forecasting strategy was to identify the leading-lagging
relations between the common components and try to summarize the relevant aggregate
information by means of simple averages of leading variables, among which the average
of the financial variables.

We found that the financial variables, as expected, are mostly leading with respect
to the consumer price index and have an average time lead of about eight months. By
contrast, the relation with the industrial production index is puzzling.

Aggregate leading information does not help predicting industrial production, but
helps predicting inflation. Inflation forecasts improve substantially when more than one
aggregate is included among the regressors. The financial predictor has a non-negligible
predictive content both when used alone and jointly with the other aggregates.
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Appendix: Estimating the spectral-density matrix of the

common components

In the first step of our procedure, we estimate the spectral-density matrix of the common
components. Here we explain the procedure in detail. We start by estimating the
spectral-density matrix of xnt. Let us denote the theoretical matrix by ΣΣΣ(θ) and its
estimate by Σ̂ΣΣ(θ). The estimation is accomplished by using a Bartlett lag-window of
size M = 18, i.e. by computing the sample auto-covariance matrices Γ̂ΓΓk, multiplying
them by the weights wk = 1 − |k|

M+1 and applying the discrete Fourier transform:

Σ̂ΣΣx(θ) =
1
2π

M∑
k=−M

wk · Γ̂ΓΓk · e−iθk.

The spectra were evaluated at 72 equally spaced frequencies in the interval [−π, π], i.e.
at the frequencies θh = 2πh

100 , h = −36, . . . , 36.
Then we performed the dynamic principal component decomposition (see Brillinger,
1981). For each frequency of the grid, we computed the eigenvalues and eigenvectors of
Σ̂ΣΣ(θ). By ordering the eigenvalues in descending order for each frequency and collecting
values corresponding to different frequencies, the eigenvalue and eigenvector functions
λj(θ) and Uj(θ), j = 1, . . . , n, are obtained. The function λj(θ) can be interpreted as
the (sample) spectral density of the j-th principal component series and, in analogy
with the standard static principal component analysis, the ratio

pj =
∫ π

−π
λj(θ)dθ/

n∑
j=1

∫ π

−π
λj(θ)dθ (A.1)

represents the contribution of the j-th principal component series to the total variance
in the system.

Letting ΛΛΛq(θ) be the diagonal matrix having on the diagonal λ1(θ), . . . , λq(θ) and
UUU q(θ) be the (n× q) matrix

(
U1(θ) · · · Uq(θ)

)
our estimate of the spectral density

matrix of the vector of the common components χχχt =
(

χ1t · · · χnt

)′
is given by

Σ̂ΣΣχ(θ) = UUU(θ)ΛΛΛ(θ)Ũ(θ) (.2)

where the tilde denotes conjugation. Given the correct choice of q, consistency results
for the entries of this matrix as both n and T go to infinity can easily be obtained from
Forni, Hallin, Lippi and Reichlin (2000). Results on consistency rates can be found in
Forni, Hallin, Lippi and Reichlin (2001a).

An estimate of the spectral density matrix of the vector of the idiosyncratic compo-
nents ξξξt =

(
ξ1t · · · ξnt

)′
can be obtained as the difference Σ̂ΣΣξ(θ) = Σ̂ΣΣ(θ) − Σ̂ΣΣχ(θ).

Starting from the estimated spectral-density matrix we can also obtain estimates
of the covariance matrices of χχχt at different leads and lags by using the inverse discrete
Fourier transform, i.e.

Γ̂ΓΓχk =
2π
72

36∑
h=−36

Σ̂ΣΣχ(θh)eiθhk.
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